Efficient Parallel Methods for Deep Reinforcement Learning

نویسندگان

  • Alfredo V. Clemente
  • Humberto Nicolás Castejón Martínez
  • Arjun Chandra
چکیده

We propose a novel framework for efficient parallelization of deep reinforcement learning algorithms, enabling these algorithms to learn from multiple actors on a single machine. The framework is algorithm agnostic and can be applied to on-policy, off-policy, value based and policy gradient based algorithms. Given its inherent parallelism, the framework can be efficiently implemented on a GPU, allowing the usage of powerful models while significantly reducing training time. We demonstrate the effectiveness of our framework by implementing an advantage actor-critic algorithm on a GPU, using on-policy experiences and employing synchronous updates. Our algorithm achieves stateof-the-art performance on the Atari domain after only a few hours of training. Our framework thus opens the door for much faster experimentation on demanding problem domains. Our implementation is open-source and is made public at https://github.com/alfredvc/paac.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Operation Scheduling of MGs Based on Deep Reinforcement Learning Algorithm

: In this paper, the operation scheduling of Microgrids (MGs), including Distributed Energy Resources (DERs) and Energy Storage Systems (ESSs), is proposed using a Deep Reinforcement Learning (DRL) based approach. Due to the dynamic characteristic of the problem, it firstly is formulated as a Markov Decision Process (MDP). Next, Deep Deterministic Policy Gradient (DDPG) algorithm is presented t...

متن کامل

Comparing Deep Reinforcement Learning and Evolutionary Methods in Continuous Control

Reinforcement learning and evolutionary strategy are two major approaches in addressing complicated control problems. Both have strong biological basis and there have been recently many advanced techniques in both domains. In this paper, we present a thorough comparison between the state of the art techniques in both domains in complex continuous control tasks. We also formulate the parallelize...

متن کامل

On-line Building Energy Optimization using Deep Reinforcement Learning

Unprecedented high volumes of data are becoming available with the growth of the advanced metering infrastructure. These are expected to benefit planning and operation of the future power system, and to help the customers transition from a passive to an active role. In this paper, we explore for the first time in the smart grid context the benefits of using Deep Reinforcement Learning, a hybrid...

متن کامل

Composable Deep Reinforcement Learning for Robotic Manipulation

Model-free deep reinforcement learning has been shown to exhibit good performance in domains ranging from video games to simulated robotic manipulation and locomotion. However, model-free methods are known to perform poorly when the interaction time with the environment is limited, as is the case for most real-world robotic tasks. In this paper, we study how maximum entropy policies trained usi...

متن کامل

Sample Efficient Deep Reinforcement Learning for Dialogue Systems with Large Action Spaces

In Statistical Dialogue Systems, we aim to deploy Artificial Intelligence to build automated dialogue agents that can converse with humans. A part of this effort is the policy optimisation task, which attempts to find a policy describing how to respond to humans, in the form of a function taking the current state of the dialogue and returning the response of the system. In this project, we inve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1705.04862  شماره 

صفحات  -

تاریخ انتشار 2017